login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266958
Numbers m such that 9*m+13 is a square.
1
-1, 4, 12, 27, 43, 68, 92, 127, 159, 204, 244, 299, 347, 412, 468, 543, 607, 692, 764, 859, 939, 1044, 1132, 1247, 1343, 1468, 1572, 1707, 1819, 1964, 2084, 2239, 2367, 2532, 2668, 2843, 2987, 3172, 3324, 3519, 3679, 3884, 4052, 4267, 4443, 4668, 4852, 5087, 5279, 5524
OFFSET
1,2
COMMENTS
Equivalently, numbers of the form h*(9*h+4)-1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ...
Also, integer values of k*(k+4)/9 minus 1.
Is A063289 (after -1) the list of the square roots of 9*a(n)+13?
FORMULA
G.f.: x*(-1 + 5*x + 10*x^2 + 5*x^3 - x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (18*(n-1)*n + (2*n-1)*(-1)^n - 7)/8.
a(n) = A185039(n) + 1.
MATHEMATICA
Select[Range[-1, 6000], IntegerQ[Sqrt[9 # + 13]] &]
Table[(18 (n-1) n + (2 n - 1) (-1)^n - 7)/8, {n, 1, 50}]
LinearRecurrence[{1, 2, -2, -1, 1}, {-1, 4, 12, 27, 43}, 50] (* Harvey P. Dale, Jan 20 2020 *)
PROG
(Sage) [n for n in range(-1, 6000) if is_square(9*n+13)]
(Sage) [(18*(n-1)*n+(2*n-1)*(-1)^n-7)/8 for n in range(1, 50)]
(PARI) for(n=-1, 6000, if(issquare(9*n+13), print1(n, ", ")))
(PARI) vector(50, n, n; (18*(n-1)*n+(2*n-1)*(-1)^n-7)/8)
(Python) from gmpy2 import is_square
[n for n in range(-1, 6000) if is_square(9*n+13)]
(Python) [(18*(n-1)*n+(2*n-1)*(-1)**n-7)/8 for n in range(1, 60)]
(Magma) [n: n in [-1..6000] | IsSquare(9*n+13)];
(Magma) [(18*(n-1)*n+(2*n-1)*(-1)^n-7)/8: n in [1..50]];
CROSSREFS
Cf. A185039.
Cf. similar sequences listed in A266956.
Sequence in context: A239940 A320923 A008107 * A057306 A212973 A047732
KEYWORD
sign,easy
AUTHOR
Bruno Berselli, Jan 07 2016
STATUS
approved