|
|
A063289
|
|
Dimension of the space of weight n cuspidal newforms for Gamma_1( 16 ).
|
|
1
|
|
|
-1, 2, 7, 11, 16, 20, 25, 29, 34, 38, 43, 47, 52, 56, 61, 65, 70, 74, 79, 83, 88, 92, 97, 101, 106, 110, 115, 119, 124, 128, 133, 137, 142, 146, 151, 155, 160, 164, 169, 173, 178, 182, 187, 191, 196, 200, 205, 209, 214, 218, 223, 227, 232, 236
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
COMMENTS
|
It appears that for n > 2 a(n) = floor((9n-22)/2). - Gary Detlefs, Mar 02 2010
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 9*n/2 + (-1)^n/4 - 45/4 for n >= 3, with first differences in A010710. - R. J. Mathar, Dec 06 2010
G.f.: x^2*(-1 + 3*x + 6*x^2 + x^3)/(1 - x - x^2 + x^3).
a(n+2) = a(n)+9 (n>2), a(2n+1) = a(2n)+4 (n>1), a(2n) = a(2n-1)+5 (n>1). (End)
Sum_{n>=3} (-1)^(n+1)/a(n) = cot(2*Pi/9)*Pi/9. - Amiram Eldar, Jan 12 2024
|
|
MATHEMATICA
|
Join[{-1}, Table[9*n/2 + (-1)^n/4 - 45/4, {n, 3, 60}]] (* Amiram Eldar, Jan 12 2024 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|