login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266957
Numbers m such that 9*m+10 is a square.
1
-1, 6, 10, 31, 39, 74, 86, 135, 151, 214, 234, 311, 335, 426, 454, 559, 591, 710, 746, 879, 919, 1066, 1110, 1271, 1319, 1494, 1546, 1735, 1791, 1994, 2054, 2271, 2335, 2566, 2634, 2879, 2951, 3210, 3286, 3559, 3639, 3926, 4010, 4311, 4399, 4714, 4806, 5135, 5231, 5574
OFFSET
1,2
COMMENTS
Equivalently, numbers of the form h*(9*h+2)-1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ...
Also, integer values of k*(k+2)/9 minus 1.
FORMULA
G.f.: x*(-1 + 7*x + 6*x^2 + 7*x^3 - x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (18*(n-1)*n + 5*(2*n-1)*(-1)^n - 3)/8.
a(n) = A132355(n) + 1.
MATHEMATICA
Select[Range[-1, 6000], IntegerQ[Sqrt[9 # + 10]] &]
Table[(18 (n - 1) n + 5 (2 n - 1) (-1)^n - 3)/8, {n, 1, 50}]
PROG
(Sage) [n for n in (-1..6000) if is_square(9*n+10)]
(Sage) [(18*(n-1)*n+5*(2*n-1)*(-1)^n-3)/8 for n in (1..50)]
(PARI) for(n=-1, 6000, if(issquare(9*n+10), print1(n, ", ")))
(PARI) vector(50, n, n; (18*(n-1)*n+5*(2*n-1)*(-1)^n-3)/8)
(Python) from gmpy2 import is_square
[n for n in range(-1, 6000) if is_square(9*n+10)]
(Python) [(18*(n-1)*n+5*(2*n-1)*(-1)**n-3)/8 for n in range(1, 60)]
(Magma) [n: n in [-1..6000] | IsSquare(9*n+10)];
(Magma) [(18*(n-1)*n+5*(2*n-1)*(-1)^n-3)/8: n in [1..50]];
CROSSREFS
Cf. A132355.
Cf. similar sequences listed in A266956.
Cf. A056020: square roots of 9*a(n)+10.
Sequence in context: A163478 A130440 A178676 * A137272 A121801 A256721
KEYWORD
sign,easy
AUTHOR
Bruno Berselli, Jan 07 2016
STATUS
approved