login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266954
Primes of the form p = a^2 + b^2 where neither |a+b| nor |a-b| is prime.
2
41, 113, 313, 353, 613, 653, 677, 761, 857, 977, 1013, 1201, 1301, 1373, 1553, 1613, 1733, 1877, 1913, 2113, 2153, 2213, 2237, 2273, 2297, 2333, 2381, 2477, 2657, 2693, 2713, 3137, 3313, 3329, 3413, 3581, 3593, 3613, 3833, 4013, 4157, 4253, 4373, 4397, 4481
OFFSET
1,1
MAPLE
filter:= proc(q) local t, p;
if not isprime(q) then return false fi;
t:= op(op(1, GaussInt:-GIfactor(q)));
p:= [abs(Re(t)+Im(t)), abs(Re(t)-Im(t))];
not isprime(p[1]) and not isprime(p[2])
end proc:
select(filter, [seq(i, i=1..10000, 4)]);
MATHEMATICA
lst = {}; Do[If[PrimeQ[a^2 + b^2] && ! PrimeQ[a + b] && ! PrimeQ[a - b], AppendTo[lst, a^2 + b^2]], {a, 2, 67}, {b, a -1}]; Take[ Union@ lst, 50] (* Robert G. Wilson v, Jan 06 2016 *)
CROSSREFS
Sequence in context: A001125 A116509 A105389 * A290589 A191867 A195317
KEYWORD
nonn
AUTHOR
Robert Israel, Jan 06 2016
STATUS
approved