login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266955
Intersection of A046346 (numbers that are divisible by the sum of their prime factors, counted with multiplicity) and A097889 (numbers that are products of at least two consecutive primes).
1
30, 105, 15015, 9699690, 37182145, 215656441, 955049953, 33426748355, 247357937827, 1448810778701, 3710369067405, 304250263527210, 102481630431415235, 1086305282573001491, 261682369333342226303, 37420578814667938361329, 241532826894674874877669
OFFSET
1,1
COMMENTS
Alladi and Erdős ask if this sequence is infinite and give 3 terms: 2*3*5, 2*3*5*7*11*13*17*19 and 2*3*5*7*11*13*17*19*23*29*31*37*41, that is, a(1), a(4) and a(12).
This sequence contains A159578(n) for all values of n > 1. - Altug Alkan, Jan 07 2016
LINKS
K. Alladi and P. Erdős, On an additive arithmetic function, Pacific J. Math., Volume 71, Number 2 (1977), 275-294.
PROG
(PARI) sopfr(n) = {my(f=factor(n)); sum(k=1, #f~, f[k, 1]*f[k, 2]); }
list(lim)= {my(v=List(), p, t); for(e=2, log(lim+.5)\log(2), p=1; t=prod(i=1, e-1, prime(i)); forprime(q=prime(e), lim, t*=q/p; if(t>lim, next(2)); if (! (t % sopfr(t)), listput(v, t)); p=nextprime(p+1))); vecsort(Vec(v)); } \\ adapted from A097889
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Jan 07 2016
EXTENSIONS
a(13)-a(17) from Hiroaki Yamanouchi, Jan 12 2016
STATUS
approved