login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266959
Smallest n-digit number ending in n.
2
1, 12, 103, 1004, 10005, 100006, 1000007, 10000008, 100000009, 1000000010, 10000000011, 100000000012, 1000000000013, 10000000000014, 100000000000015, 1000000000000016, 10000000000000017, 100000000000000018, 1000000000000000019, 10000000000000000020
OFFSET
1,2
COMMENTS
Digital sum of a(n) = digsum(n) + 1 for n>1.
3, 229, 4987 are the initial values of n for prime a(n). - Altug Alkan, Jan 17 2016
FORMULA
a(n) = n + 10^(n-1) for n>1 with a(1) = 1.
a(n) = A081552(n) - 1 for n>1. - Michel Marcus, Jan 10 2016
From Colin Barker, Jan 10 2016: (Start)
a(n) = 12*a(n-1) - 21*a(n-2) + 10*a(n-3) for n>3.
G.f.: x*(1-20*x^2+10*x^3) / ((1-x)^2*(1-10*x)). (End)
EXAMPLE
a(4) = 1004 because it is the smallest 4-digit number ending in 4.
MAPLE
A266959:=n->n+10^(n-1): 1, seq(A266959(n), n=2..30);
MATHEMATICA
Join[{1}, Table[n + 10^(n - 1), {n, 2, 20}]]
PROG
(Magma) [1] cat [n+10^(n-1): n in [2..30]]; // Vincenzo Librandi, Jan 10 2016
(PARI) Vec(x*(1-20*x^2+10*x^3)/((1-x)^2*(1-10*x)) + O(x^30)) \\ Colin Barker, Jan 10 2016
(PARI) a(n) = if(n==1, 1, n + 10^(n-1)); \\ Altug Alkan, Jan 17 2016
(Python)
def A266959(n): return n+10**(n-1) if n > 1 else 1 # Chai Wah Wu, Jul 25 2022
CROSSREFS
Cf. A007953 (digsum), A081552, A279913.
Sequence in context: A264452 A078397 A228988 * A262778 A099293 A024454
KEYWORD
nonn,easy,base
AUTHOR
Wesley Ivan Hurt, Jan 09 2016
STATUS
approved