login
A081552
Leading terms of rows in A081551.
12
1, 11, 102, 1003, 10004, 100005, 1000006, 10000007, 100000008, 1000000009, 10000000010, 100000000011, 1000000000012, 10000000000013, 100000000000014, 1000000000000015, 10000000000000016, 100000000000000017, 1000000000000000018
OFFSET
1,2
COMMENTS
More generally, a(n) = B^K + n; K = floor(log_B a(n-1)) + 1. This sequence has B=10, a(0)=1; A006127 has B=2, a(0)=1; A052944 has B=2, a(0)=2; A104743 has B=3, a(0)=1; A104745 has B=5, a(0)=1. - Ctibor O. Zizka, Mar 22 2008
FORMULA
a(n) = 10^(n-1) + n-1.
G.f.: x*(1 -x -9*x^2)/((1-10*x)*(1-x)^2). - Vincenzo Librandi, Jun 16 2013
a(n) = 12*a(n-1) -21*a(n-2) +10*a(n-3). - Vincenzo Librandi, Jun 16 2013
E.g.f.: (1/10)*(9 - 10*(1-x)*exp(x) + exp(10*x)). - G. C. Greubel, May 27 2021
MAPLE
seq(10^(n-1) +n-1, n=1..40); # G. C. Greubel, May 27 2021
MATHEMATICA
Table[10^(n-1) +n-1, {n, 30}] (* or *) CoefficientList[Series[(1-x-9x^2)/((1-10x)(1-x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *)
PROG
(Magma) [10^(n-1)+n-1: n in [1..20]]; /* or */ I:=[1, 11, 102]; [n le 3 select I[n] else 12*Self(n-1)-21*Self(n-2)+10*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013
(Sage) [10^(n-1) +n-1 for n in (1..40)] # G. C. Greubel, May 27 2021
CROSSREFS
Cf. A011557, A081551, A081553, A085952 (first differences, after n=2).
Sequence in context: A014832 A048441 A099294 * A364578 A156948 A287302
KEYWORD
base,easy,nonn
AUTHOR
Amarnath Murthy, Apr 01 2003
STATUS
approved