|
|
A287302
|
|
Primes that can be generated by the concatenation in base 4, in ascending order, of two consecutive integers read in base 10.
|
|
0
|
|
|
11, 103, 137, 239, 1171, 1301, 1951, 2081, 2341, 2731, 2861, 3121, 3251, 3511, 16963, 17477, 20047, 21589, 23131, 26729, 30841, 34439, 40093, 43177, 43691, 45233, 46261, 60139, 61681, 63737, 270601, 272651, 278801, 291101, 295201, 297251, 315701, 321851, 325951
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..39.
|
|
EXAMPLE
|
2 and 3 in base 4 are 2 and 3 and concat(2,3) = 23 in base 10 is 11;
6 and 7 in base 4 are 12 and 13 and concat(12,13) = 1213 in base 10 is 103.
|
|
MAPLE
|
with(numtheory): P:= proc(q, h) local a, b, c, d, k, n; a:=convert(q+1, base, h); b:=convert(q, base, h); c:=[op(a), op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; end: seq(P(i, 4), i=1..1000);
|
|
MATHEMATICA
|
With[{b = 4}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Partition[Range@ 320, 2, 1]], PrimeQ]] (* Michael De Vlieger, May 23 2017 *)
|
|
CROSSREFS
|
Cf. A000040, A030458.
Sequence in context: A099294 A081552 A156948 * A141915 A016133 A287833
Adjacent sequences: A287299 A287300 A287301 * A287303 A287304 A287305
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
Paolo P. Lava, May 23 2017
|
|
STATUS
|
approved
|
|
|
|