|
|
A287299
|
|
Number of ways of writing n as a sum of a proper prime power (A246547) and a nonprime squarefree number (A000469).
|
|
1
|
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 2, 1, 0, 1, 2, 2, 0, 0, 2, 2, 1, 1, 3, 0, 1, 1, 4, 3, 0, 2, 2, 2, 0, 3, 4, 3, 1, 2, 6, 3, 1, 0, 5, 4, 2, 2, 4, 3, 0, 2, 3, 5, 0, 1, 3, 4, 3, 2, 4, 3, 3, 4, 5, 4, 0, 2, 5, 5, 0, 4, 6, 2, 1, 1, 7, 3, 1, 2, 7, 4, 2, 4, 5, 5, 1, 3, 6, 5, 1, 3, 6, 6, 3, 4, 4, 4, 2, 4, 7, 6, 3, 1, 4, 4, 0, 4, 6, 5, 2, 2, 7, 5, 2, 1, 7, 8, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,11
|
|
COMMENTS
|
Conjecture: a(n) > 0 for all n > 108.
|
|
LINKS
|
Table of n, a(n) for n=0..120.
Ilya Gutkovskiy, Extended graphical example
Eric Weisstein's World of Mathematics, Prime Power
Eric Weisstein's World of Mathematics, Squarefree
|
|
FORMULA
|
G.f.: (Sum_{k>=1} x^A246547(k))*(Sum_{k>=1} x^A000469(k)).
|
|
EXAMPLE
|
a(26) = 3 because we have [25, 1], [22, 4] and [16, 10].
|
|
MATHEMATICA
|
nmax = 120; CoefficientList[Series[(Sum[Boole[SquareFreeQ[k] && ! PrimeQ[k]] x^k, {k, 1, nmax}]) (Sum[Boole[PrimePowerQ[k] && ! PrimeQ[k]] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
|
|
PROG
|
(PARI) x='x+O('x^120); concat([0, 0, 0, 0, 0], Vec(sum(k=1, 120, (issquarefree(k) && !isprime(k))*x^k) * sum(k=1, 120, (isprimepower(k) && !isprime(k))*x^k))) \\ Indranil Ghosh, May 23 2017
|
|
CROSSREFS
|
Cf. A000469, A098983, A246547, A282192, A282290, A282318, A282947.
Sequence in context: A219492 A285796 A317241 * A100699 A108921 A071548
Adjacent sequences: A287296 A287297 A287298 * A287300 A287301 A287302
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ilya Gutkovskiy, May 23 2017
|
|
STATUS
|
approved
|
|
|
|