

A287296


Numbers k such that 8*10^k + 51 is prime.


0



0, 1, 4, 6, 9, 10, 16, 31, 33, 93, 289, 304, 921, 3946, 4506, 4978, 5481, 7114, 13512, 14703, 14823, 16851, 26662, 1183, 77377, 82417, 95316, 98982
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

For k>1, numbers such that the digit 8 followed by k2 occurrences of the digit 0 followed by the digits 51 is prime (see Example section).
a(29) > 10^5.


LINKS

Table of n, a(n) for n=1..28.
Makoto Kamada, Factorization of nearrepdigitrelated numbers.
Makoto Kamada, Search for 80w51.


EXAMPLE

4 is in this sequence because 8*10^4 + 51 = 80051 is prime.
Initial terms and primes associated:
a(1) = 0, 59;
a(2) = 1, 131;
a(3) = 4, 80051;
a(4) = 6, 8000051;
a(5) = 9, 8000000051; etc.


MATHEMATICA

Select[Range[0, 100000], PrimeQ[8*10^# + 51] &]


CROSSREFS

Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
Sequence in context: A087112 A077554 A262812 * A275197 A118778 A108635
Adjacent sequences: A287293 A287294 A287295 * A287297 A287298 A287299


KEYWORD

nonn,more,hard


AUTHOR

Robert Price, May 22 2017


STATUS

approved



