login
A000469
1 together with products of 2 or more distinct primes.
42
1, 6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158
OFFSET
1,2
COMMENTS
Nonprime squarefree numbers.
Except for 1, composite n such that the squarefree part of n is greater than phi(n). - Benoit Cloitre, Apr 06 2002
FORMULA
n such that A007913(n)>A000010(n). - Benoit Cloitre, Apr 06 2002
N-floor(N/p1) - floor(N/(p2) - ... - floor(N/p(i) + floor(N/(c2) + floor(N/(c3)+ ... + floor(N/c(j)-1 where N is any number; p1,p2 are the primes with p(i) being the first prime > square root of N and c2, c3 are the numbers other than 1 in this sequence with c(j) <= N will yield the number of primes less than or equal to N other than p1, p2, ..., p(i). - Ben Paul Thurston, Aug 15 2007
A005171(a(n))*A008966(a(n)) = 1. - Reinhard Zumkeller, Nov 01 2009
Sum(n=1, Infinity, 1/a(n)^s) = Zeta(s)/Zeta(2s) - PrimeZeta(s). - Enrique Pérez Herrero, Mar 31 2012
n such that A001221(n) = A001222(n), n nonprime. - Carlos Eduardo Olivieri, Aug 06 2015
a(n) = kn + O(n/log n) where k = Pi^2/6. - Charles R Greathouse IV, Aug 02 2024
MAPLE
select(numtheory:-issqrfree and not isprime, [$1..1000]); # Robert Israel, Aug 06 2015
MATHEMATICA
lst={}; Do[If[SquareFreeQ[n], If[ !PrimeQ[n], AppendTo[lst, n]]], {n, 200}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 20 2009 *)
With[{upto=200}, Complement[Select[Range[upto], SquareFreeQ], Prime[ Range[ PrimePi[ upto]]]]] (* Harvey P. Dale, Oct 01 2011 *)
Select[Range[200], !PrimeQ[#] && PrimeOmega[#] == PrimeNu[#] &] (* Carlos Eduardo Olivieri, Aug 06 2015 *)
PROG
(PARI) for(n=0, 64, if(isprime(n), n+1, if(issquarefree(n), print(n))))
(PARI) for(n=1, 160, if(core(n)*(1-isprime(n))>eulerphi(n), print1(n, ", ")))
(Haskell)
a000469 n = a000469_list !! (n-1)
a000469_list = filter ((== 0) . a010051) a005117_list
-- Reinhard Zumkeller, Mar 21 2014
(Python)
from math import isqrt
from sympy import primepi, mobius
def A000469(n):
def f(x): return n+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 02 2024
CROSSREFS
Cf. A005117, A007913, A000010, A010051, A239508, A239509, A120944 (composite squarefree numbers, same sequence apart from the first term).
Sequence in context: A212168 A344585 A080365 * A120944 A327829 A052053
KEYWORD
nonn,easy,nice
AUTHOR
Dan Bentley (dtb(AT)research.att.com)
STATUS
approved