|
|
A317241
|
|
Number of representations of n of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
|
|
15
|
|
|
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 0, 0, 0, 2, 1, 0, 1, 0, 1, 0, 0, 2, 1, 1, 2, 2, 1, 3, 1, 1, 1, 0, 1, 2, 0, 2, 2, 1, 1, 1, 0, 0, 1, 1, 1, 3, 1, 0, 1, 1, 0, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 1, 0, 0, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 1, 2, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,25
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(25) = 2: 1 + 2 * (1 + 11) = 1 + 3 * (1 + 7) = 25.
a(43) = 3: 1 + 2 * (1 + 5 * (1 + 3)) = 1 + 3 * (1 + 13) = 1 + 7 * (1 + 5) = 43.
|
|
MAPLE
|
b:= proc(n, s) option remember; `if`(n=1, 1,
add(b((n-1)/p, s union {p}), p=numtheory[factorset](n-1) minus s))
end:
a:= n-> b(n, {}):
seq(a(n), n=1..200);
|
|
MATHEMATICA
|
b[n_, s_] := b[n, s] = If[n == 1, 1, Sum[If[p == 1, 0, b[(n - 1)/p, s ~Union~ {p}]], {p, FactorInteger[n - 1][[All, 1]] ~Complement~ s}]];
a[n_] := b[n, {}];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|