login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317241 Number of representations of n of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes. 15
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 0, 0, 0, 2, 1, 0, 1, 0, 1, 0, 0, 2, 1, 1, 2, 2, 1, 3, 1, 1, 1, 0, 1, 2, 0, 2, 2, 1, 1, 1, 0, 0, 1, 1, 1, 3, 1, 0, 1, 1, 0, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 1, 0, 0, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 1, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,25
LINKS
FORMULA
a(n) = 0 <=> n in { A317242 }.
a(n) <= A317240(n).
EXAMPLE
a(25) = 2: 1 + 2 * (1 + 11) = 1 + 3 * (1 + 7) = 25.
a(43) = 3: 1 + 2 * (1 + 5 * (1 + 3)) = 1 + 3 * (1 + 13) = 1 + 7 * (1 + 5) = 43.
MAPLE
b:= proc(n, s) option remember; `if`(n=1, 1,
add(b((n-1)/p, s union {p}), p=numtheory[factorset](n-1) minus s))
end:
a:= n-> b(n, {}):
seq(a(n), n=1..200);
MATHEMATICA
b[n_, s_] := b[n, s] = If[n == 1, 1, Sum[If[p == 1, 0, b[(n - 1)/p, s ~Union~ {p}]], {p, FactorInteger[n - 1][[All, 1]] ~Complement~ s}]];
a[n_] := b[n, {}];
Array[a, 200] (* Jean-François Alcover, May 26 2019, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A024941 A219492 A285796 * A361499 A287299 A374207
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 24 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 9 20:10 EDT 2024. Contains 375765 sequences. (Running on oeis4.)