login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of representations of n of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
15

%I #18 May 26 2019 16:15:19

%S 1,0,1,1,0,1,0,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,0,1,2,0,0,0,2,1,0,1,0,1,

%T 0,0,2,1,1,2,2,1,3,1,1,1,0,1,2,0,2,2,1,1,1,0,0,1,1,1,3,1,0,1,1,0,2,1,

%U 1,1,2,1,1,1,1,1,2,0,1,1,0,0,1,1,2,1,2,2,2,1,3,1,1,1,0,0,2,1,1,1,1,1,2,1,1

%N Number of representations of n of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.

%H Alois P. Heinz, <a href="/A317241/b317241.txt">Table of n, a(n) for n = 1..65536</a>

%F a(n) = 0 <=> n in { A317242 }.

%F a(n) <= A317240(n).

%e a(25) = 2: 1 + 2 * (1 + 11) = 1 + 3 * (1 + 7) = 25.

%e a(43) = 3: 1 + 2 * (1 + 5 * (1 + 3)) = 1 + 3 * (1 + 13) = 1 + 7 * (1 + 5) = 43.

%p b:= proc(n, s) option remember; `if`(n=1, 1,

%p add(b((n-1)/p, s union {p}), p=numtheory[factorset](n-1) minus s))

%p end:

%p a:= n-> b(n, {}):

%p seq(a(n), n=1..200);

%t b[n_, s_] := b[n, s] = If[n == 1, 1, Sum[If[p == 1, 0, b[(n - 1)/p, s ~Union~ {p}]], {p, FactorInteger[n - 1][[All, 1]] ~Complement~ s}]];

%t a[n_] := b[n, {}];

%t Array[a, 200] (* _Jean-François Alcover_, May 26 2019, after _Alois P. Heinz_ *)

%Y Cf. A317240, A317242, A317385.

%K nonn

%O 1,25

%A _Alois P. Heinz_, Jul 24 2018