login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317385
Smallest positive integer that has exactly n representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
4
2, 1, 25, 43, 211, 638, 664, 1613, 2991, 7021, 11306, 9439, 17361, 23230, 40886, 38341, 49063, 36583, 99111, 111229, 110631, 171718, 233451, 255531, 309141, 327643, 369519, 521266, 489406, 738544, 682690, 812826, 1048594, 1015096, 2003002, 2118439, 1602360, 2204907, 2850772, 2702743, 2794198
OFFSET
0,1
FORMULA
a(n) = min { j > 0 : A317241(j) = n }.
EXAMPLE
a(1) = 1: 1.
a(2) = 25: 1 + 2 * (1 + 11) = 1 + 3 * (1 + 7) = 25.
a(3) = 43: 1 + 2 * (1 + 5 * (1 + 3)) = 1 + 3 * (1 + 13) = 1 + 7 * (1 + 5) = 43.
MAPLE
b:= proc(n, s) option remember; `if`(n=1, 1, add(b((n-1)/p
, s union {p}), p=numtheory[factorset](n-1) minus s))
end:
a:= proc(n) option remember; local k;
for k while n<>b(k, {}) do od; k
end:
seq(a(n), n=0..15);
MATHEMATICA
b[n_, s_] := b[n, s] = If[n == 1, 1, Sum[If[p == 1, 0, b[(n - 1)/p, s~Union~{p}]], {p, FactorInteger[n - 1][[All, 1]]~Complement~s}]];
A[n_, k_] := Module[{h, p, q = 0}, p[_] = {}; While[Length[p[k]] < n, q++; h = b[q, {}]; p[h] = Append[p[h], q]]; p[k][[n]]];
a[k_] := If[k == 0, 2, A[1, k]];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 14 2021, after Alois P. Heinz in A317390 *)
CROSSREFS
Row n=1 of A317390.
Sequence in context: A013317 A010256 A087452 * A366048 A098878 A235031
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 26 2018
STATUS
approved