login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317383
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 4, 4, 8, 5, 5, 8, 16, 9, 18, 9, 16, 32, 22, 36, 36, 22, 32, 64, 45, 94, 123, 94, 45, 64, 128, 101, 270, 414, 414, 270, 101, 128, 256, 218, 731, 1580, 2089, 1580, 731, 218, 256, 512, 477, 1973, 5704, 10732, 10732, 5704, 1973, 477, 512, 1024, 1041, 5388
OFFSET
1,2
COMMENTS
Table starts
...1...2....4.....8......16.......32........64........128..........256
...2...4....5.....9......22.......45.......101........218..........477
...4...5...18....36......94......270.......731.......1973.........5388
...8...9...36...123.....414.....1580......5704......20162........72715
..16..22...94...414....2089....10732.....52617.....260141......1299431
..32..45..270..1580...10732....75405....508181....3446847.....23624322
..64.101..731..5704...52617...508181...4726521...44156330....416173164
.128.218.1973.20162..260141..3446847..44156330..569899203...7400913778
.256.477.5388.72715.1299431.23624322.416173164.7400913778.132364711390
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = a(n-1) +3*a(n-2) -2*a(n-4) for n>6
k=3: a(n) = a(n-1) +3*a(n-2) +5*a(n-3) +2*a(n-4) -3*a(n-5) -10*a(n-6) -8*a(n-7) for n>10
k=4: [order 19] for n>23
k=5: [order 43] for n>49
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..1..0. .0..0..0..0. .1..0..1..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .1..0..0..0. .0..0..0..0. .1..0..0..0. .1..0..0..0
..0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..1..0
..0..0..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..0. .0..0..0..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A052962 for n>2.
Sequence in context: A316420 A304926 A306166 * A033717 A320202 A320201
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 26 2018
STATUS
approved