login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317238
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 4, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 4, 4, 8, 12, 12, 8, 16, 24, 28, 24, 16, 32, 64, 60, 60, 64, 32, 64, 184, 211, 168, 211, 184, 64, 128, 432, 597, 674, 674, 597, 432, 128, 256, 1088, 1619, 2432, 4798, 2432, 1619, 1088, 256, 512, 2944, 4792, 8255, 24487, 24487, 8255, 4792, 2944, 512, 1024
OFFSET
1,2
COMMENTS
Table starts
...1....2.....4......8......16.......32........64.........128..........256
...2....4....12.....24......64......184.......432........1088.........2944
...4...12....28.....60.....211......597......1619........4792........13802
...8...24....60....168.....674.....2432......8255.......29245.......105103
..16...64...211....674....4798....24487....112675......602717......3142280
..32..184...597...2432...24487...157007....995887.....7221707.....50355283
..64..432..1619...8255..112675...995887...8436662....83084854....788831052
.128.1088..4792..29245..602717..7221707..83084854..1148371444..15185768273
.256.2944.13802.105103.3142280.50355283.788831052.15185768273.277147933683
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +8*a(n-3) -8*a(n-4) -8*a(n-5) for n>6
k=3: [order 13] for n>14
k=4: [order 65] for n>67
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1
..1..0..1..1. .1..1..0..1. .0..0..0..0. .1..1..0..0. .1..0..0..1
..0..0..0..0. .1..1..1..0. .1..1..0..1. .1..1..1..1. .1..0..0..0
..0..0..0..0. .1..1..1..1. .1..1..1..0. .1..1..1..1. .0..0..0..0
..1..1..0..0. .1..1..1..1. .1..1..1..1. .0..0..1..1. .0..0..1..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A303794.
Sequence in context: A304848 A316545 A306060 * A260038 A193916 A304347
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 24 2018
STATUS
approved