login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317242
Positive integers having no representation of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
4
2, 5, 7, 11, 15, 23, 26, 27, 28, 31, 33, 35, 36, 47, 50, 56, 57, 63, 66, 78, 81, 82, 95, 96, 106, 116, 119, 120, 122, 129, 136, 156, 162, 166, 167, 190, 193, 215, 218, 219, 227, 236, 244, 254, 263, 286, 289, 330, 335, 342, 352, 359, 387, 393, 395, 396, 414
OFFSET
1,1
LINKS
FORMULA
A317241(a(n)) = 0.
MAPLE
q:= proc(n, s) option remember; is (n=1 or ormap(p->
q((n-1)/p, s union {p}), numtheory[factorset](n-1) minus s))
end:
a:= proc(n) option remember; local k; for k from
`if`(n=1, 2, 1+a(n-1)) while q(k, {}) do od; k
end:
seq(a(n), n=1..100);
MATHEMATICA
b[n_, s_] := b[n, s] = If[n == 1, 1, Sum[If[p == 1, 0, b[(n - 1)/p, s ~Union~ {p}]], {p, FactorInteger[n - 1][[All, 1]] ~Complement~ s}]];
Position[Array[b[#, {}]&, 10^5], 0] // Flatten (* Jean-François Alcover, Jul 14 2021, after Alois P. Heinz in A317241 *)
CROSSREFS
Column k=0 of A317390.
Cf. A180337 (subsequence), A317241.
Sequence in context: A006066 A084935 A239072 * A217302 A062409 A342939
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 24 2018
STATUS
approved