The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A342939 a(n) is the Skolem number of the triangular grid graph T_n. 2
 1, 2, 5, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379, 1432, 1486 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For the meaning of Skolem number of a graph, see Definitions 1.4 and 1.5 in Carrigan and Green. LINKS Table of n, a(n) for n=1..55. Braxton Carrigan and Garrett Green, Skolem Number of Subgraphs on the Triangular Lattice, Communications on Number Theory and Combinatorial Theory 2 (2021), Article 2. Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA O.g.f.: x*(1 - x + 2*x^2 - 3*x^3 + 3*x^4 - x^5)/(1 - x)^3. E.g.f.: exp(x)*(2 + x^2)/2 - 1 + x^3/6. a(n) = 3*a(n-1) - 3*a(n-2) - a(n-3) for n > 6. Except for a(3) = 5: a(n) = 1 + n*(n - 1)/2 (see Theorem 2.5 in Carrigan and Green). a(n) = 1 + A161680(n). a(n) = A152947(n-1). MATHEMATICA LinearRecurrence[{3, -3, 1}, {1, 2, 5, 7, 11, 16}, 55] CROSSREFS Cf. A152947, A161680, A247476, A342938, A342940. For n > 1, 3*A002061(n) gives the Skolem number of the hexagonal grid graph H_n. Sequence in context: A317242 A217302 A062409 * A089781 A144832 A309290 Adjacent sequences: A342936 A342937 A342938 * A342940 A342941 A342942 KEYWORD nonn,easy AUTHOR Stefano Spezia, Mar 30 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 25 09:18 EDT 2024. Contains 371967 sequences. (Running on oeis4.)