OFFSET
0,5
COMMENTS
From a posting by Hugh Montgomery to the Number Theory mailing list, Oct 05 2004: "Estermann, JLMS (1931), established an asymptotic formula for a(n). Page, PLMS (1935), gave a quantitative version of this, with an error term roughly (log n)^5 smaller than the main term. Walfisz, Zur additiven Zahlentheorie II, Math. Z. 40 (1936), 592-607, established what we know today as the "Siegel-Walfisz theorem" in a series of lemmas and used this new tool to give the formula for a(n) with an error term that is smaller by a factor (log n)^c for any c."
LINKS
T. D. Noe, Table of n, a(n) for n = 0..10000
Adrian Dudek, On the Sum of a Prime and a Square-free Number, arXiv:1410.7459 [math.NT], 2014.
T. Estermann, On the representations of a number as the sum of a prime and a quadratfrei number, J. London Math. Soc., S1-6(3):219, 1931.
Forrest J. Francis and Ethan S. Lee, Additive Representations of Natural Numbers, #A14 INTEGERS 22 (2022).
A. Page, On the Number of Primes in an Arithmetic Progression, Proc London Math Soc (1935) s2-39 (1): 116-141.
A. Walfisz, Zur additiven Zahlentheorie II, Math. Z. 40 (1936), 592-607.
FORMULA
G.f.: (x^2+x^3+x^5+x^7+x^11+x^13+x^17+x^19+...)(x+x^2+x^3+x^5+x^6+x^7+x^10+x^11+x^13+x^14+x^15+x^17+x^19+...).
Dudek shows that a(n) > 0 for n > 2. - Charles R Greathouse IV, Dec 23 2020
EXAMPLE
a(8) = 4: 8=2+6=3+5=5+3=7+1.
MATHEMATICA
m = 90; sf = Total[ x^Select[Range[m], SquareFreeQ] ]; pp = Sum[x^Prime[n], {n, 1, PrimePi @ Exponent[sf[[-1]], x]}]; CoefficientList[Series[pp * sf, {x, 0, m-1}], x] (* Jean-François Alcover, Jul 20 2011 *)
PROG
(Haskell)
a098983 n = sum $ map (a008966 . (n -)) $ takeWhile (< n) a000040_list
-- Reinhard Zumkeller, Sep 14 2011
(PARI) a(n)=my(s); forprime(p=2, n, s+=issquarefree(n-p)); s \\ Charles R Greathouse IV, Jun 20 2013
(PARI) a(n)=my(s); forsquarefree(k=1, n-2, if(isprime(n-k[1]), s++)); s \\ Charles R Greathouse IV, Dec 23 2020
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane, Oct 24 2004
STATUS
approved