OFFSET
0,9
COMMENTS
Number of partitions of n into parts 3, 4, 5, and 12. - Vincenzo Librandi, Jun 03 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,1,1,1,0,-1,-1,-1,0,0,2,0,0,-1,-1,-1,0,1,1,1,0,0,-1).
FORMULA
G.f.: 1/((1-x^3)*(1-x^4)*(1-x^5)*(1-x^12)).
a(n) = a(n-3)+a(n-4)+a(n-5)-a(n-7)-a(n-8)-a(n-9)+2*a(n-12)-a(n-15)-a(n-16)-a(n-17)+a(n-19)+a(n-20)+a(n-21)-a(n-24). - Wesley Ivan Hurt, Aug 19 2022
MATHEMATICA
CoefficientList[Series[1/((1 - x^3) (1 - x^4) (1 - x^5) (1 - x^12)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 03 2014 *)
PROG
(PARI) Vec(1/((1-x^3)*(1-x^4)*(1-x^5)*(1-x^12)) + O(x^80)) \\ Jinyuan Wang, Mar 12 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved