Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Apr 12 2022 11:33:28
%S 0,0,0,1,2,2,2,2,4,3,3,1,4,4,4,3,5,4,6,4,6,4,6,3,9,5,7,3,7,4,7,4,8,7,
%T 9,4,10,6,8,6,10,6,11,7,12,8,11,5,13,8,11,6,11,8,13,6,10,7,13,6,16,7,
%U 13,8,16,7,14,7,13,10,15,7,18,10,17,10,18,9,17,8,17,12,17,8,21,12,15,9,18,13
%N Number of ways of writing n as a sum of a prime and a squarefree number.
%C From a posting by Hugh Montgomery to the Number Theory mailing list, Oct 05 2004: "Estermann, JLMS (1931), established an asymptotic formula for a(n). Page, PLMS (1935), gave a quantitative version of this, with an error term roughly (log n)^5 smaller than the main term. Walfisz, Zur additiven Zahlentheorie II, Math. Z. 40 (1936), 592-607, established what we know today as the "Siegel-Walfisz theorem" in a series of lemmas and used this new tool to give the formula for a(n) with an error term that is smaller by a factor (log n)^c for any c."
%H T. D. Noe, <a href="/A098983/b098983.txt">Table of n, a(n) for n = 0..10000</a>
%H Adrian Dudek, <a href="http://arxiv.org/abs/1410.7459">On the Sum of a Prime and a Square-free Number</a>, arXiv:1410.7459 [math.NT], 2014.
%H T. Estermann, <a href="https://doi.org/10.1112/jlms/s1-6.3.219">On the representations of a number as the sum of a prime and a quadratfrei number</a>, J. London Math. Soc., S1-6(3):219, 1931.
%H Forrest J. Francis and Ethan S. Lee, <a href="http://math.colgate.edu/~integers/w14/w14.pdf">Additive Representations of Natural Numbers</a>, #A14 INTEGERS 22 (2022).
%H A. Page, <a href="https://doi.org/10.1112/plms/s2-39.1.116">On the Number of Primes in an Arithmetic Progression</a>, Proc London Math Soc (1935) s2-39 (1): 116-141.
%H A. Walfisz, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002376350">Zur additiven Zahlentheorie II</a>, Math. Z. 40 (1936), 592-607.
%F G.f.: (x^2+x^3+x^5+x^7+x^11+x^13+x^17+x^19+...)(x+x^2+x^3+x^5+x^6+x^7+x^10+x^11+x^13+x^14+x^15+x^17+x^19+...).
%F a(n+1) = Sum_{k=1..n} A008966(k)*A010051(n-k+1) for n>0. [_Reinhard Zumkeller_, Nov 04 2009]
%F Dudek shows that a(n) > 0 for n > 2. - _Charles R Greathouse IV_, Dec 23 2020
%e a(8) = 4: 8=2+6=3+5=5+3=7+1.
%t m = 90; sf = Total[ x^Select[Range[m], SquareFreeQ] ]; pp = Sum[x^Prime[n], {n, 1, PrimePi @ Exponent[sf[[-1]], x]}]; CoefficientList[Series[pp * sf, {x, 0, m-1}], x] (* _Jean-François Alcover_, Jul 20 2011 *)
%o (Haskell)
%o a098983 n = sum $ map (a008966 . (n -)) $ takeWhile (< n) a000040_list
%o -- _Reinhard Zumkeller_, Sep 14 2011
%o (PARI) a(n)=my(s);forprime(p=2,n,s+=issquarefree(n-p));s \\ _Charles R Greathouse IV_, Jun 20 2013
%o (PARI) a(n)=my(s);forsquarefree(k=1,n-2,if(isprime(n-k[1]),s++));s \\ _Charles R Greathouse IV_, Dec 23 2020
%K nonn,nice
%O 0,5
%A _N. J. A. Sloane_, Oct 24 2004