|
|
A266962
|
|
Numbers n such that (2^(n+8) * 5^(n+5) - 409949) / 9 is prime (n > 0).
|
|
0
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers n such that '43339' appended to n times the digit 8 is prime.
a(n) mod 7 <= 5 (zero or prime <= 5).
|
|
LINKS
|
|
|
EXAMPLE
|
5 appears because 8888843339 ('8' concatenated 5 times and prepended to '43339') is prime.
|
|
MATHEMATICA
|
Select[ Range[2000], PrimeQ[(2^(#+8)*5^(#+5) - 409949) / 9] &] (* Or *)
Select[ Range[2000], PrimeQ[2*(2^(#+7)*5^(#+5) - 204979) / 9 + 1] &]
|
|
PROG
|
(PARI) is(n) = ispseudoprime((2^(n+8)*5^(n+5) - 409949) / 9); \\ Altug Alkan, Jan 15 2016
(Magma) [n: n in [0..500] |IsPrime((2^(n+8)*5^(n+5)-409949) div 9)]; // Vincenzo Librandi, Jan 16 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,more
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|