OFFSET
1,2
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10001
Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
Andrew Sills, Towards an Automation of the Circle Method, Gems in Experimental Mathematics in Contemporary Mathematics, 2010, formula S76.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q^2)^3* eta(q^3)/ (eta(q)^3* eta(q^6)) -1)/3 in powers of q.
Euler transform of period 18 sequence [ 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 0, ...].
G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v)= u^2 -v -2*v^2 -4*u*v -6*u*v^2.
G.f. A(x) satisfies 0=f(A(x), A(x^3)) where f(u, v)= u^3 -v* (1+3*v+3*v^2)* (1+6*u+12*u^2).
a(n) ~ exp(2*sqrt(2*n)*Pi/3) / (2^(7/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Jan 12 2017
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(18*k))*(1 - x^(18*k - 3))*(1 - x^(18*k - 15))/((1 - x^(2*k - 1))*(1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 11 2017 *)
PROG
(PARI) {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff( eta(x^2+A)* eta(x^3+A)* eta(x^18+A)^2/ (eta(x^6+A)* eta(x^9+A)* eta(x+A)^2), n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Feb 15 2007
STATUS
approved