login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A128129
Expansion of (chi(-q^3)/ chi^3(-q) -1)/3 in powers of q where chi() is a Ramanujan theta function.
8
1, 2, 4, 7, 12, 20, 32, 50, 76, 114, 168, 244, 350, 496, 696, 967, 1332, 1820, 2468, 3324, 4448, 5916, 7824, 10292, 13471, 17548, 22756, 29384, 37788, 48408, 61784, 78578, 99600, 125838, 158496, 199036, 249230, 311224, 387608, 481506, 596676
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
Andrew Sills, Towards an Automation of the Circle Method, Gems in Experimental Mathematics in Contemporary Mathematics, 2010, formula S76.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q^2)^3* eta(q^3)/ (eta(q)^3* eta(q^6)) -1)/3 in powers of q.
Euler transform of period 18 sequence [ 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 0, ...].
G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v)= u^2 -v -2*v^2 -4*u*v -6*u*v^2.
G.f. A(x) satisfies 0=f(A(x), A(x^3)) where f(u, v)= u^3 -v* (1+3*v+3*v^2)* (1+6*u+12*u^2).
a(n) ~ exp(2*sqrt(2*n)*Pi/3) / (2^(7/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Jan 12 2017
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(18*k))*(1 - x^(18*k - 3))*(1 - x^(18*k - 15))/((1 - x^(2*k - 1))*(1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 11 2017 *)
PROG
(PARI) {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff( eta(x^2+A)* eta(x^3+A)* eta(x^18+A)^2/ (eta(x^6+A)* eta(x^9+A)* eta(x+A)^2), n))}
CROSSREFS
A128128(n)=3*a(n) if n>0.
Sequence in context: A036372 A132218 A101230 * A014968 A289115 A342528
KEYWORD
nonn
AUTHOR
Michael Somos, Feb 15 2007
STATUS
approved