The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261241 One half of numbers representable in at least two different ways as sums of four nonvanishing cubes. See A259060 for these numbers and their representations. 1
 3213, 3950, 4807, 5796, 6929, 8218, 9675, 11312, 13141, 15174, 17423, 19900, 22617, 25586, 28819, 32328, 36125, 40222, 44631, 49364, 54433, 59850, 65627, 71776, 78309, 85238, 92575, 100332, 108521, 117154, 126243, 135800, 145837, 156366 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A259060. There may be other numbers with this property. REFERENCES W. Sierpiński, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970, Problem 227, p. 20 and p. 110. LINKS Table of n, a(n) for n=0..33. Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = (n+9)*(2*n^2 + 36*n + 357), n >= 0. O.g.f.: (3213 - 8902*x + 8285*x^2 - 2584*x^3)/(1-x)^4. a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Vincenzo Librandi, Aug 13 2015 MATHEMATICA CoefficientList[Series[(3213 - 8902 x + 8285 x^2 - 2584 x^3)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 13 2015 *) PROG (Magma) [(n+9)*(2*n^2 + 36*n + 357): n in [0..50]] /* or */ I:=[3213, 3950, 4807, 5796]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 13 2015 CROSSREFS Cf. A259060. Sequence in context: A048255 A303995 A091329 * A345772 A020414 A202612 Adjacent sequences: A261238 A261239 A261240 * A261242 A261243 A261244 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Aug 12 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 12 11:04 EDT 2024. Contains 374244 sequences. (Running on oeis4.)