OFFSET
2,2
COMMENTS
a(1) is undefined, as prime(1) is the only even prime, for which the length-5 chain is of 2 + successive odd pentagonal numbers A014632: 2 prime, 2+1 = 3 prime, 2+5 = 7 prime, 2+35 = 37 prime, 2+51 = 53 prime, but 2+117 = 119 = 7 * 17 nonprime. Pentagonal numbers A000326 = n*(3*n-1)/2 = 0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ... Even pentagonal numbers A014633 = 12, 22, 70, 92, 176, 210, 330, 376, 532, 590, 782, 852, 1080, ...
FORMULA
EXAMPLE
a(2) = 1 because prime(2) = 3 is prime, but prime(2) + EvenPent(1) = 3 + 12 = 15 = 3 * 5 is nonprime, giving a chain of just 1 successive prime.
a(3) = 2 because 5 is prime, prime(3) + EvenPent(1) = 5 + 12 = 17 is prime, but prime(3) + EvenPent(2) = 5 + 22 = 27 = 3^3 is nonprime, giving a chain of 2 successive primes.
a(4) = 3 because 7 is prime, 7+12 = 19 is prime, 7+22 = 29 is prime, but 7+70 = 77 = 7*11 is nonprime, for a chain of 3 successive primes.
MATHEMATICA
evp = Select[#*(3*# - 1)/2 &@ Range[200], EvenQ]; a[n_] := Block[{s = Prime@n, c = 1}, While[PrimeQ[s + evp[[c]]], c++]; c]; a /@ Range[2, 90] (* Giovanni Resta, Jun 14 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 11 2006
EXTENSIONS
Corrected and extended by Giovanni Resta, Jun 14 2016
STATUS
approved