login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343899
a(n) = Sum_{k=0..n} (k!)^k * binomial(n,k).
4
1, 2, 7, 232, 332669, 24884861086, 139314218808181027, 82606412229102532926819812, 6984964247802365417561163907914436537, 109110688415634181158572146813823590758078301022074, 395940866122426284350759726810156652343313286283891529199276099071
OFFSET
0,2
COMMENTS
Binomial transform of (n!)^n.
LINKS
FORMULA
G.f.: Sum_{k>=0} (k! * x)^k/(1 - x)^(k+1).
E.g.f.: exp(x) * Sum_{k>=0} (k!)^(k-1) * x^k.
MATHEMATICA
a[n_] := Sum[(k!)^k * Binomial[n, k], {k, 0, n}]; Array[a, 11, 0] (* Amiram Eldar, May 05 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, k!^k*binomial(n, k));
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k!*x)^k/(1-x)^(k+1)))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, k!^(k-1)*x^k)))
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 03 2021
STATUS
approved