OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 for n > 2.
a(n) > 0 for all n >= 1 since (2-1)|phi(n). Furthermore, because phi(n) is even for n > 2 and therefore divisible by (3-1), a(n) > 1 for n > 2. - Amiram Eldar, Dec 06 2024
EXAMPLE
For n = 13: A000010(13) = 12 and for p = 2, 3, 5, 7, 13 we have p-1 = 1, 2, 4, 6, 12 and 12 is divisible by each value of p-1, so a(13) = 5.
MATHEMATICA
a[n_] := DivisorSum[EulerPhi[n], 1 &, PrimeQ[# + 1] &]; Array[a, 100] (* Amiram Eldar, Dec 06 2024 *)
PROG
(PARI) a(n) = my(e=eulerphi(n), i=0); forprime(p=2, e+1, if(e%(p-1)==0, i++)); i \\ corrected by Amiram Eldar, Dec 06 2024
(PARI) a(n) = sumdiv(eulerphi(n), d, isprime(d+1)); \\ Amiram Eldar, Dec 06 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, May 03 2021
EXTENSIONS
Data corrected by Amiram Eldar, Dec 06 2024
STATUS
approved