OFFSET
1,858
COMMENTS
A Pythagorean triangle is a right triangle whose edge lengths are all integers; such a triangle is 'primitive' if the lengths are relatively prime.
Equivalently, number of odd unitary divisors d of n such that sqrt(n) < d < sqrt(2n). (A divisor d of n is 'unitary' if gcd(d,n/d) = 1.) Sketch of proof: A primitive Pythagorean triangle has edge lengths (r^2-s^2, 2rs, r^2+s^2), where 1<=s<r, r and s are relatively prime and r+s is odd. This has perimeter 2n iff n=r(r+s). Let d=r+s.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..158730
EXAMPLE
a(858)=2; the primitive Pythagorean triangles with edge lengths (364, 627, 725) and (195, 748, 773) both have perimeter 2*858 = 1716.
MATHEMATICA
oddpart[n_] := If[OddQ[n], n, oddpart[n/2]]; a[n_] := Length[Select[Divisors[oddpart[n]], n<#^2<2n&&GCD[ #, n/# ]==1&]]
(* Second program: *)
Table[DivisorSum[n/2^IntegerExponent[n, 2], 1 &, n < #^2 < 2 n && CoprimeQ[#, n/#] &], {n, 105}] (* Michael De Vlieger, Oct 08 2017 *)
PROG
(Magma) UnitaryDivisors :=
func<n| [d:d in Divisors(n)|GCD(d, n div d) eq 1]>;
A078926:=
func<n | #[d:d in UnitaryDivisors(n)| IsOdd(d) and Isqrt(n) lt d and d le Isqrt(2*n-1)] >;
[A078926(n):n in [1..105]];
(PARI) A078926(n) = sumdiv(n, d, (d%2)*(1==gcd(d, n/d))*((d*d)>n)*((d*d)<(2*n))); \\ Antti Karttunen, Oct 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Dean Hickerson, Dec 15 2002
EXTENSIONS
Secondary offset added by Antti Karttunen, Oct 07 2017
STATUS
approved