login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025458
Number of partitions of n into 5 positive cubes.
3
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
OFFSET
0,158
COMMENTS
a(n) > 2 at n= 766, 810, 827, 829, 865, 883, 981, 1018, 1025, 1044,... - R. J. Mathar, Sep 15 2015
The first term > 1 is a(157) = 2. - Michel Marcus, Apr 25 2019
FORMULA
a(n) = [x^n y^5] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019
MAPLE
A025458 := proc(n)
local a, x, y, z, u, vcu ;
a := 0 ;
for x from 1 do
if 5*x^3 > n then
return a;
end if;
for y from x do
if x^3+4*y^3 > n then
break;
end if;
for z from y do
if x^3+y^3+3*z^3 > n then
break;
end if;
for u from z do
if x^3+y^3+z^3+2*u^3 > n then
break;
end if;
vcu := n-x^3-y^3-z^3-u^3 ;
if isA000578(vcu) then
a := a+1 ;
end if;
end do:
end do:
end do:
end do:
end proc: # R. J. Mathar, Sep 15 2015
MATHEMATICA
a[n_] := IntegerPartitions[n, {5}, Range[n^(1/3) // Ceiling]^3] // Length;
a /@ Range[0, 157] (* Jean-François Alcover, Jun 20 2020 *)
CROSSREFS
Column 5 of A320841, which cross-references the equivalent sequences for other numbers of positive cubes.
Positions of values: A057906 (0), A003328 (nonzero), A048926 (1), A048927 (2), A343705 (3), A344035 (4).
Sequence in context: A373383 A078926 A324824 * A378449 A286925 A378598
KEYWORD
nonn
EXTENSIONS
Second offset from Michel Marcus, Apr 25 2019
STATUS
approved