login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025459
Number of partitions of n into 6 positive cubes.
3
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0
OFFSET
0,159
FORMULA
a(n) = [x^n y^6] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019
MAPLE
A025459 := proc(n)
local a, x, y, z, u, v, wcu ;
a := 0 ;
for x from 1 do
if 6*x^3 > n then
return a;
end if;
for y from x do
if x^3+5*y^3 > n then
break;
end if;
for z from y do
if x^3+y^3+4*z^3 > n then
break;
end if;
for u from z do
if x^3+y^3+z^3+3*u^3 > n then
break;
end if;
for v from u do
if x^3+y^3+z^3+u^3+2*v^3 > n then
break;
end if;
wcu := n-x^3-y^3-z^3-u^3-v^3 ;
if isA000578(wcu) then
a := a+1 ;
end if;
end do:
end do:
end do:
end do:
end do:
end proc: # R. J. Mathar, Sep 15 2015
# Alternative:
N:= 200:
G:= mul(1/(1-y*x^(k^3)), k=1..floor(N^(1/3))):
C6:= coeff(series(G, y, 7), y, 6):
S:= series(C6, x, N+1):
seq(coeff(S, x, i), i=0..N); # Robert Israel, May 10 2020
MATHEMATICA
a[n_] := Count[PowersRepresentations[n, 6, 3], pr_List /; FreeQ[pr, 0]];
a /@ Range[0, 200] (* Jean-François Alcover, Jun 22 2020 *)
Table[Count[IntegerPartitions[n, {6}], _?(AllTrue[Surd[#, 3], IntegerQ]&)], {n, 0, 110}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 06 2021 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved