The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025462 Number of partitions of n into 9 positive cubes. 3
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,73 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..65536 Index entries for sequences related to sums of cubes FORMULA a(n) = [x^n y^9] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019 MAPLE b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+ `if`(i^3>n, 0, b(n-i^3, i, t-1)))) end: a:= n-> b(n, iroot(n, 3), 9): seq(a(n), n=0..120); # Alois P. Heinz, Dec 21 2018 MATHEMATICA b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^3 > n, 0, b[n - i^3, i, t - 1]]]]; a[n_] := b[n, n^(1/3) // Floor, 9]; a /@ Range[0, 120] (* Jean-François Alcover, Dec 04 2020, after Alois P. Heinz *) CROSSREFS Cf. A000578 (cubes). Column k=9 of A320841. Sequence in context: A307505 A035162 A121454 * A024879 A024316 A345375 Adjacent sequences: A025459 A025460 A025461 * A025463 A025464 A025465 KEYWORD nonn AUTHOR David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 17:49 EDT 2023. Contains 365666 sequences. (Running on oeis4.)