login
A373256
a(n) = 1 if A003415(n) == -1 (mod 3), otherwise 0, where A003415 is the arithmetic derivative.
4
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
OFFSET
0
COMMENTS
Question: Do the asymptotic means of this sequence, A373254 and A359430 all converge to 1/3, or do they differ or diverge?
FORMULA
a(n) = [A373253(n) == -1], where [ ] is the Iverson bracket.
a(n) = 1 - (A359430(n)+A373254(n)).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A373256(n) = (2==(A003415(n)%3));
CROSSREFS
Characteristic function of A373257.
Sequence in context: A358842 A358758 A185708 * A286996 A044937 A025459
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 01 2024
STATUS
approved