login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into 6 positive cubes.
3

%I #24 Jan 09 2023 07:41:18

%S 0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,

%T 1,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,1,

%U 0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,1,0,1,0,0,0,1,1,0,0,0,1,0,1,1,0,0,0,1,0,1,1,0,0

%N Number of partitions of n into 6 positive cubes.

%H Robert Israel, <a href="/A025459/b025459.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>

%F a(n) = [x^n y^6] Product_{k>=1} 1/(1 - y*x^(k^3)). - _Ilya Gutkovskiy_, Apr 23 2019

%p A025459 := proc(n)

%p local a,x,y,z,u,v,wcu ;

%p a := 0 ;

%p for x from 1 do

%p if 6*x^3 > n then

%p return a;

%p end if;

%p for y from x do

%p if x^3+5*y^3 > n then

%p break;

%p end if;

%p for z from y do

%p if x^3+y^3+4*z^3 > n then

%p break;

%p end if;

%p for u from z do

%p if x^3+y^3+z^3+3*u^3 > n then

%p break;

%p end if;

%p for v from u do

%p if x^3+y^3+z^3+u^3+2*v^3 > n then

%p break;

%p end if;

%p wcu := n-x^3-y^3-z^3-u^3-v^3 ;

%p if isA000578(wcu) then

%p a := a+1 ;

%p end if;

%p end do:

%p end do:

%p end do:

%p end do:

%p end do:

%p end proc: # _R. J. Mathar_, Sep 15 2015

%p # Alternative:

%p N:= 200:

%p G:= mul(1/(1-y*x^(k^3)),k=1..floor(N^(1/3))):

%p C6:= coeff(series(G,y,7),y,6):

%p S:= series(C6,x,N+1):

%p seq(coeff(S,x,i),i=0..N); # _Robert Israel_, May 10 2020

%t a[n_] := Count[PowersRepresentations[n, 6, 3], pr_List /; FreeQ[pr, 0]];

%t a /@ Range[0, 200] (* _Jean-François Alcover_, Jun 22 2020 *)

%t Table[Count[IntegerPartitions[n,{6}],_?(AllTrue[Surd[#,3],IntegerQ]&)],{n,0,110}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jun 06 2021 *)

%Y Cf. A003329, A048929, A048930, A048931.

%K nonn

%O 0,159

%A _David W. Wilson_