OFFSET
1,1
COMMENTS
Differs from A344034 at term 13 because 1765 = 1^3 + 1^3 + 2^3 + 3^3 + 12^3 = 1^3 + 1^3 + 6^3 + 6^3 + 11^3 = 1^3 + 2^3 + 3^3 + 9^3 + 10^3 = 3^3 + 4^3 + 6^3 + 9^3 + 9^3 = 4^3 + 4^3 + 5^3 + 8^3 + 10^3
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..20000
EXAMPLE
1461 is a member of this sequence because 1461 = 1^3 + 1^3 + 1^3 + 9^3 + 9^3 = 1^3 + 1^3 + 4^3 + 4^3 + 11^3 = 3^3 + 3^3 + 4^3 + 7^3 + 10^3 = 6^3 + 6^3 + 7^3 + 7^3 + 7^3
MATHEMATICA
s5pcQ[n_]:=Length[Select[PowersRepresentations[n, 5, 3], FreeQ[#, 0]&]]==4; Select[Range[ 3000], s5pcQ] (* Harvey P. Dale, Sep 15 2024 *)
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 50)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 4])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
David Consiglio, Jr., May 07 2021
STATUS
approved