The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A344355 Numbers that are the sum of five fourth powers in exactly four ways. 8
 20995, 21235, 31250, 41474, 43235, 43250, 43315, 43490, 43859, 45139, 46290, 47570, 51939, 53234, 53299, 54994, 56274, 57379, 57410, 57779, 59329, 63970, 67010, 68035, 68290, 71795, 71954, 73730, 73954, 75714, 75794, 77890, 82099, 84499, 86275, 86450, 87730, 92500, 93474, 93859, 94130, 94210, 96194 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Differs from A344354 at term 22 because 59779 = 1^4 + 1^4 + 5^4 + 12^4 + 14^4 = 1^4 + 6^4 + 6^4 + 9^4 + 15^4 = 2^4 + 9^4 + 10^4 + 11^4 + 13^4 = 4^4 + 7^4 + 7^4 + 8^4 + 15^4 = 7^4 + 7^4 + 9^4 + 10^4 + 14^4. LINKS David Consiglio, Jr., Table of n, a(n) for n = 1..20000 EXAMPLE 31250 is a term of this sequence because 31250 = 2^4 + 2^4 + 4^4 + 7^4 + 13^4 = 2^4 + 3^4 + 6^4 + 6^4 + 13^4 = 4^4 + 6^4 + 7^4 + 9^4 + 12^4 = 5^4 + 5^4 + 10^4 + 10^4 + 10^4. PROG (Python) from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 50)] for pos in cwr(power_terms, 5): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 4]) for x in range(len(rets)): print(rets[x]) CROSSREFS Cf. A344035, A344244, A344353, A344354, A344359, A344519, A345816. Sequence in context: A233649 A262668 A344354 * A231314 A157083 A183639 Adjacent sequences: A344352 A344353 A344354 * A344356 A344357 A344358 KEYWORD nonn AUTHOR David Consiglio, Jr., May 15 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 01:48 EDT 2023. Contains 363029 sequences. (Running on oeis4.)