login
A344357
Numbers that are the sum of four fourth powers in exactly five ways.
7
2147874, 2266338, 2690658, 3189603, 3464178, 3754674, 4030419, 4165794, 4457298, 4884114, 5229378, 5978883, 5980178, 5981283, 6014178, 6134994, 6258723, 6313953, 6400194, 6612354, 7088898, 7498323, 7811874, 7918498, 8064018, 8292323, 8630259, 9146034, 9269523, 9388978, 9397683, 9726978
OFFSET
1,1
COMMENTS
Differs from A344356 at term 7 because 3847554 = 2^4 + 13^4 + 29^4 + 42^4 = 2^4 + 21^4 + 22^4 + 43^4 = 6^4 + 11^4 + 17^4 + 44^4 = 6^4 + 31^4 + 32^4 + 37^4 = 9^4 + 29^4 + 32^4 + 38^4 = 13^4 + 26^4 + 32^4 + 39^4.
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..20000
EXAMPLE
2690658 is a term of this sequence because 2690658 = 2^4 + 8^4 + 33^4 + 35^4 = 3^4 + 4^4 + 19^4 + 40^4 = 7^4 + 8^4 + 30^4 + 37^4 = 9^4 + 21^4 + 30^4 + 36^4 = 16^4 + 25^4 + 32^4 + 33^4.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 50)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 5])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved