login
A345816
Numbers that are the sum of six fourth powers in exactly four ways.
8
6626, 6691, 6866, 9251, 9491, 10115, 10706, 10786, 11555, 12595, 14225, 14691, 14771, 15315, 15330, 15570, 16051, 16595, 16660, 16675, 16850, 17090, 17091, 17236, 17316, 17331, 17346, 17860, 17875, 17940, 17955, 18195, 18786, 18851, 19155, 19170, 19475, 19490
OFFSET
1,1
COMMENTS
Differs from A345561 at term 16 because 15395 = 1^4 + 1^4 + 1^4 + 6^4 + 8^4 + 10^4 = 1^4 + 2^4 + 5^4 + 8^4 + 8^4 + 9^4 = 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 10^4 = 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 11^4.
LINKS
EXAMPLE
6691 is a term because 6691 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4.
MATHEMATICA
Select[Range[20000], Count[PowersRepresentations[#, 6, 4], _?(#[[1]]>0&)]==4&] (* Harvey P. Dale, Mar 11 2023 *)
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 4])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved