login
A345818
Numbers that are the sum of six fourth powers in exactly six ways.
8
37811, 38051, 43251, 43571, 44115, 44531, 45155, 45651, 45891, 47411, 47586, 49971, 52195, 53235, 54131, 56290, 57395, 57460, 57570, 59075, 59330, 59860, 60035, 62180, 62211, 63971, 66340, 67026, 67635, 67715, 67860, 67940, 68115, 68291, 68484, 69395, 69410
OFFSET
1,1
COMMENTS
Differs from A345563 at term 1 because 21251 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 12^4 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 11^4 = 1^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 11^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 12^4 = 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 11^4.
LINKS
EXAMPLE
37811 is a term because 37811 = 1^4 + 2^4 + 2^4 + 7^4 + 11^4 + 12^4 = 2^4 + 2^4 + 4^4 + 7^4 + 9^4 + 13^4 = 2^4 + 3^4 + 6^4 + 6^4 + 9^4 + 13^4 = 3^4 + 4^4 + 8^4 + 8^4 + 11^4 + 11^4 = 4^4 + 6^4 + 7^4 + 9^4 + 9^4 + 12^4 = 5^4 + 5^4 + 9^4 + 10^4 + 10^4 + 10^4.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved