login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346361
Numbers that are the sum of six fifth powers in exactly six ways.
6
287718651, 553545456, 746783675, 972232800, 1005620508, 1040741042, 1070652352, 1074892544, 1182426366, 1197332400, 1243267146, 1317183650, 1364866263, 1387455091, 1429663400, 1498160992, 1529189818, 1554833117, 1558594400, 1610298901, 1623782765, 1627228231
OFFSET
1,1
COMMENTS
Differs from A345720 at term 10 because 1184966816 = 15^5 + 24^5 + 27^5 + 38^5 + 39^5 + 63^5 = 2^5 + 28^5 + 36^5 + 36^5 + 42^5 + 62^5 = 4^5 + 24^5 + 38^5 + 38^5 + 40^5 + 62^5 = 21^5 + 32^5 + 37^5 + 41^5 + 45^5 + 60^5 = 8^5 + 14^5 + 34^5 + 40^5 + 52^5 + 58^5 = 11^5 + 17^5 + 22^5 + 49^5 + 51^5 + 56^5 = 11^5 + 16^5 + 22^5 + 52^5 + 52^5 + 53^5.
LINKS
EXAMPLE
287718651 is a term because 287718651 = 10^5 + 11^5 + 20^5 + 22^5 + 30^5 + 48^5 = 8^5 + 10^5 + 21^5 + 27^5 + 27^5 + 48^5 = 3^5 + 6^5 + 25^5 + 30^5 + 30^5 + 47^5 = 9^5 + 10^5 + 13^5 + 26^5 + 37^5 + 46^5 = 6^5 + 9^5 + 14^5 + 31^5 + 35^5 + 46^5 = 10^5 + 11^5 + 12^5 + 23^5 + 41^5 + 44^5.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved