login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A345768 Numbers that are the sum of six cubes in exactly six ways. 7
1377, 1488, 1586, 1595, 1647, 1673, 1677, 1738, 1764, 1799, 1829, 1836, 1837, 1862, 1881, 1890, 1911, 1953, 1955, 2007, 2011, 2014, 2018, 2025, 2044, 2070, 2079, 2097, 2107, 2108, 2142, 2153, 2170, 2177, 2203, 2214, 2216, 2222, 2223, 2226, 2229, 2252, 2258 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Differs from A345515 at term 8 because 1710 = 1^3 + 1^3 + 5^3 + 5^3 + 9^3 + 9^3 = 1^3 + 2^3 + 3^3 + 6^3 + 9^3 + 9^3 = 1^3 + 2^3 + 4^3 + 5^3 + 8^3 + 10^3 = 1^3 + 4^3 + 4^3 + 5^3 + 5^3 + 11^3 = 2^3 + 2^3 + 2^3 + 7^3 + 7^3 + 10^3 = 2^3 + 3^3 + 4^3 + 4^3 + 6^3 + 11^3 = 4^3 + 4^3 + 5^3 + 6^3 + 8^3 + 9^3.
LINKS
EXAMPLE
1488 is a term because 1488 = 1^3 + 1^3 + 1^3 + 3^3 + 8^3 + 8^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 10^3 = 1^3 + 2^3 + 3^3 + 6^3 + 6^3 + 8^3 = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 10^3 = 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 9^3 = 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
Sequence in context: A283231 A283790 A345515 * A323815 A352731 A307422
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 22:36 EDT 2024. Contains 373532 sequences. (Running on oeis4.)