The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A345769 Numbers that are the sum of six cubes in exactly seven ways. 7
1710, 1766, 1773, 1988, 2051, 2160, 2196, 2249, 2251, 2259, 2314, 2322, 2349, 2375, 2417, 2424, 2480, 2492, 2513, 2520, 2531, 2539, 2548, 2564, 2565, 2574, 2611, 2613, 2639, 2656, 2702, 2707, 2762, 2770, 2773, 2792, 2798, 2808, 2818, 2825, 2826, 2833, 2844 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Differs from A345516 at term 4 because 1981 = 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 12^3 = 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 12^3 = 1^3 + 1^3 + 5^3 + 5^3 + 9^3 + 10^3 = 1^3 + 1^3 + 6^3 + 6^3 + 6^3 + 11^3 = 1^3 + 2^3 + 3^3 + 6^3 + 9^3 + 10^3 = 3^3 + 3^3 + 7^3 + 7^3 + 8^3 + 9^3 = 3^3 + 4^3 + 6^3 + 6^3 + 9^3 + 9^3 = 4^3 + 4^3 + 5^3 + 6^3 + 8^3 + 10^3.
LINKS
EXAMPLE
1766 is a term because 1766 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 11^3 = 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 9^3 = 1^3 + 3^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 9^3 = 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 9^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
Sequence in context: A029559 A222553 A345516 * A062916 A241554 A352949
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 22:09 EDT 2024. Contains 372782 sequences. (Running on oeis4.)