login
A345769
Numbers that are the sum of six cubes in exactly seven ways.
7
1710, 1766, 1773, 1988, 2051, 2160, 2196, 2249, 2251, 2259, 2314, 2322, 2349, 2375, 2417, 2424, 2480, 2492, 2513, 2520, 2531, 2539, 2548, 2564, 2565, 2574, 2611, 2613, 2639, 2656, 2702, 2707, 2762, 2770, 2773, 2792, 2798, 2808, 2818, 2825, 2826, 2833, 2844
OFFSET
1,1
COMMENTS
Differs from A345516 at term 4 because 1981 = 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 12^3 = 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 12^3 = 1^3 + 1^3 + 5^3 + 5^3 + 9^3 + 10^3 = 1^3 + 1^3 + 6^3 + 6^3 + 6^3 + 11^3 = 1^3 + 2^3 + 3^3 + 6^3 + 9^3 + 10^3 = 3^3 + 3^3 + 7^3 + 7^3 + 8^3 + 9^3 = 3^3 + 4^3 + 6^3 + 6^3 + 9^3 + 9^3 = 4^3 + 4^3 + 5^3 + 6^3 + 8^3 + 10^3.
LINKS
EXAMPLE
1766 is a term because 1766 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 11^3 = 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 9^3 = 1^3 + 3^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 9^3 = 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 9^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved