login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A345767 Numbers that are the sum of six cubes in exactly five ways. 7
1045, 1169, 1241, 1260, 1384, 1432, 1440, 1495, 1530, 1539, 1549, 1556, 1558, 1584, 1594, 1602, 1612, 1617, 1640, 1654, 1657, 1675, 1703, 1712, 1715, 1719, 1729, 1736, 1745, 1747, 1754, 1771, 1780, 1792, 1801, 1803, 1806, 1810, 1818, 1825, 1827, 1834, 1843 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Differs from A345514 at term 5 because 1377 = 1^3 + 1^3 + 2^3 + 7^3 + 8^3 + 8^3 = 1^3 + 1^3 + 5^3 + 5^3 + 5^3 + 10^3 = 1^3 + 2^3 + 3^3 + 5^3 + 6^3 + 10^3 = 1^3 + 6^3 + 6^3 + 6^3 + 6^3 + 8^3 = 3^3 + 3^3 + 5^3 + 7^3 + 7^3 + 8^3 = 3^3 + 4^3 + 5^3 + 6^3 + 6^3 + 9^3.
LINKS
EXAMPLE
1169 is a term because 1169 = 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 9^3 = 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 7^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 5])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
Sequence in context: A224604 A045027 A345514 * A324320 A334012 A344376
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 02:56 EDT 2024. Contains 373629 sequences. (Running on oeis4.)