The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A345516 Numbers that are the sum of six cubes in seven or more ways. 8
 1710, 1766, 1773, 1981, 1988, 2051, 2105, 2160, 2168, 2196, 2249, 2251, 2259, 2277, 2314, 2322, 2349, 2368, 2375, 2376, 2417, 2424, 2431, 2438, 2457, 2466, 2480, 2492, 2494, 2513, 2520, 2531, 2538, 2539, 2548, 2555, 2557, 2564, 2565, 2574, 2583, 2593, 2611 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Sean A. Irvine, Table of n, a(n) for n = 1..10000 EXAMPLE 1766 is a term because 1766 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 11^3 = 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 9^3 = 1^3 + 3^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 9^3 = 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 9^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3. PROG (Python) from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 7]) for x in range(len(rets)): print(rets[x]) CROSSREFS Cf. A344811, A345180, A345515, A345517, A345525, A345564, A345769. Sequence in context: A157287 A029559 A222553 * A345769 A062916 A241554 Adjacent sequences: A345513 A345514 A345515 * A345517 A345518 A345519 KEYWORD nonn AUTHOR David Consiglio, Jr., Jun 20 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 20:11 EDT 2024. Contains 372952 sequences. (Running on oeis4.)