login
A345525
Numbers that are the sum of seven cubes in seven or more ways.
8
1072, 1170, 1235, 1261, 1268, 1305, 1385, 1392, 1396, 1411, 1440, 1441, 1448, 1450, 1459, 1489, 1496, 1502, 1504, 1513, 1515, 1538, 1540, 1547, 1552, 1557, 1559, 1564, 1565, 1566, 1567, 1576, 1585, 1587, 1592, 1593, 1594, 1600, 1602, 1603, 1606, 1613, 1620
OFFSET
1,1
LINKS
EXAMPLE
1170 is a term because 1170 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 9^3 = 1^3 + 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 8^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 7^3 = 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 + 7^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved