|
|
A345522
|
|
Numbers that are the sum of seven cubes in four or more ways.
|
|
8
|
|
|
470, 496, 503, 603, 627, 634, 653, 659, 685, 690, 692, 711, 712, 747, 751, 754, 761, 766, 768, 773, 775, 777, 780, 783, 787, 792, 794, 812, 813, 829, 831, 836, 838, 842, 843, 845, 857, 859, 864, 867, 871, 874, 875, 881, 883, 885, 890, 892, 894, 899, 900, 901
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
496 is a term because 496 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3.
|
|
PROG
|
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 4])
for x in range(len(rets)):
print(rets[x])
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|