login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252260
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum not equal to 0 2 3 6 or 7 and every 3X3 diagonal and antidiagonal sum equal to 0 2 3 6 or 7
5
1072, 1331, 1331, 965, 1016, 965, 972, 562, 562, 972, 1086, 512, 596, 512, 1086, 1187, 570, 778, 778, 570, 1187, 1468, 782, 1260, 1316, 1260, 782, 1468, 1936, 1178, 1636, 1958, 1958, 1636, 1178, 1936, 2388, 1670, 2478, 2660, 3530, 2660, 2478, 1670, 2388
OFFSET
1,1
COMMENTS
Table starts
.1072.1331..965...972..1086...1187...1468....1936....2388....3052.....4008
.1331.1016..562...512...570....782...1178....1670....2474....3890.....5642
..965..562..596...778..1260...1636...2478....3940....5958....9178....14534
..972..512..778..1316..1958...2660...4490....7250...10634...17954....28994
.1086..570.1260..1958..3530...6072..11762...21346...39202...80834...147842
.1187..782.1636..2660..6072...9836..17774...38612...70970..132530...284490
.1468.1178.2478..4490.11762..17774..33218...84866..142178..265730...678914
.1936.1670.3940..7250.21346..38612..84866..252162..478370.1145858..3467266
.2388.2474.5958.10634.39202..70970.142178..478370.1017410.2120450..6956290
.3052.3890.9178.17954.80834.132530.265730.1145858.2120450.4251650.18333698
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 5*a(n-3) +a(n-5) -8*a(n-6) -4*a(n-8) +4*a(n-9) +5*a(n-11) -2*a(n-14) for n>27
k=2: a(n) = a(n-1) +6*a(n-3) -6*a(n-4) -8*a(n-6) +8*a(n-7) for n>12
k=3: a(n) = a(n-1) +6*a(n-3) -6*a(n-4) -8*a(n-6) +8*a(n-7) for n>12
k=4: a(n) = a(n-1) +4*a(n-3) -4*a(n-4) for n>9
k=5: a(n) = a(n-1) +12*a(n-3) -12*a(n-4) -32*a(n-6) +32*a(n-7) for n>12
k=6: a(n) = a(n-1) +12*a(n-3) -12*a(n-4) -32*a(n-6) +32*a(n-7) for n>12
k=7: a(n) = a(n-1) +8*a(n-3) -8*a(n-4) for n>9
EXAMPLE
Some solutions for n=4 k=4
..1..1..3..1..1..3....2..1..2..2..1..2....2..2..0..2..2..1....3..0..2..3..3..2
..3..0..1..0..0..1....3..2..3..3..2..3....3..3..2..3..3..2....2..2..0..2..2..1
..0..0..1..0..0..1....3..2..3..3..2..3....3..3..2..3..3..2....3..3..2..3..3..2
..1..1..3..1..1..2....2..1..2..2..0..2....2..2..0..2..2..0....3..3..2..3..3..2
..0..0..1..0..0..1....3..2..3..3..2..3....3..3..2..3..3..2....2..2..1..2..2..0
..0..0..1..0..3..2....3..2..3..3..2..3....0..3..2..3..0..2....3..3..2..3..3..2
CROSSREFS
Column 4 is A251890 for n>2
Column 5 is A251891 for n>2
Column 6 is A251892 for n>2
Column 7 is A251893 for n>2
Sequence in context: A345525 A345779 A252257 * A085337 A085338 A250636
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 16 2014
STATUS
approved