login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251892
Number of (n+2) X (6+2) 0..3 arrays with every 3 X 3 subblock row and column sum not 2 3 6 or 7 and every diagonal and antidiagonal sum 2 3 6 or 7.
2
1752, 790, 1636, 2660, 6072, 9836, 17774, 38612, 70970, 132530, 284490, 536930, 1021634, 2178338, 4172162, 8018690, 17036418, 32884226, 63532034, 134730242, 261101570, 505786370, 1071597570, 2080923650, 4036411394, 8547803138
OFFSET
1,1
COMMENTS
Column 6 of A251894.
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 12*a(n-3) - 12*a(n-4) - 32*a(n-6) + 32*a(n-7) for n>12.
Empirical g.f.: 2*x*(876 - 481*x + 423*x^2 - 10000*x^3 + 7478*x^4 - 3194*x^5 + 25857*x^6 - 25445*x^7 + 7131*x^8 - 464*x^9 + 5544*x^10 - 7704*x^11) / ((1 - x)*(1 - 2*x)*(1 + 2*x + 4*x^2)*(1 - 4*x^3)). - Colin Barker, Mar 20 2018
EXAMPLE
Some solutions for n=4:
..2..3..3..2..3..3..2..0....0..2..2..0..2..2..1..2....1..3..1..1..2..1..1..2
..1..2..2..1..2..2..0..2....2..3..3..2..3..3..2..3....0..1..0..0..1..0..0..1
..2..3..3..2..3..3..2..3....2..3..3..2..3..3..2..3....0..1..0..0..1..0..0..1
..2..3..3..2..3..3..2..3....1..2..2..1..2..2..1..2....1..2..1..1..2..1..1..3
..0..2..2..0..2..2..0..2....2..3..3..2..3..3..2..3....0..1..0..0..1..0..0..1
..2..3..3..2..3..3..2..3....2..3..3..2..3..3..2..3....0..1..0..0..1..0..0..1
CROSSREFS
Cf. A251894.
Sequence in context: A201801 A172833 A172882 * A143994 A157325 A223448
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 10 2014
STATUS
approved