login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157325
a(n) = 1728*n + 24.
3
1752, 3480, 5208, 6936, 8664, 10392, 12120, 13848, 15576, 17304, 19032, 20760, 22488, 24216, 25944, 27672, 29400, 31128, 32856, 34584, 36312, 38040, 39768, 41496, 43224, 44952, 46680, 48408, 50136, 51864, 53592, 55320, 57048, 58776
OFFSET
1,1
COMMENTS
The identity (10368*n^2 + 288*n + 1)^2 - (36*n^2 + n)*(1728*n + 24)^2 = 1 can be written as A157326(n)^2 - A157324(n)*a(n)^2 = 1 (see also second part of the comment at A157324). - Vincenzo Librandi, Jan 26 2012
FORMULA
G.f.: x*(1752 - 24*x)/(1-x)^2. - Vincenzo Librandi, Jan 26 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 26 2012
MATHEMATICA
LinearRecurrence[{2, -1}, {1752, 3480}, 50] (* Vincenzo Librandi, Jan 26 2012 *)
1728*Range[40]+24 (* Harvey P. Dale, Feb 28 2016 *)
PROG
(Magma) I:=[1752, 3480]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jan 26 2012
(PARI) for(n=1, 22, print1(1728*n + 24", ")); \\ Vincenzo Librandi, Jan 26 2012
CROSSREFS
Sequence in context: A172882 A251892 A143994 * A223448 A102327 A076809
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 27 2009
STATUS
approved