login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076809
a(n) = n^4 + 853n^3 + 2636n^2 + 3536n + 1753.
7
1753, 8779, 26209, 59197, 112921, 192583, 303409, 450649, 639577, 875491, 1163713, 1509589, 1918489, 2395807, 2946961, 3577393, 4292569, 5097979, 5999137, 7001581, 8110873, 9332599, 10672369, 12135817, 13728601, 15456403, 17324929, 19339909, 21507097, 23832271, 26321233, 28979809, 31813849, 34829227
OFFSET
0,1
COMMENTS
A prime-generating quartic polynomial.
For n=0 ... 20, the terms in this sequence are primes. This is not the case for n=21. See A272325 and A272326. - Robert Price, Apr 25 2016
FORMULA
G.f.: -(x^4-1588*x^3-156*x^2+14*x+1753)/(x- 1)^5. [Colin Barker, Nov 11 2012]
E.g.f.: (1753 + 7026*x + 5202*x^2 + 859*x^3 + x^4)*exp(x). - Ilya Gutkovskiy, Apr 25 2016
MAPLE
A076809:=n->n^4 + 853*n^3 + 2636*n^2 + 3536*n + 1753; seq(A076809(n), n=0..100); # Wesley Ivan Hurt, Nov 13 2013
MATHEMATICA
Table[n^4 + 853n^3 + 2636n^2 + 3536n + 1753, {n, 0, 100}] (* Wesley Ivan Hurt, Nov 13 2013 *)
CoefficientList[Series[-(x^4 - 1588 x^3 - 156 x^2 + 14 x + 1753)/(x - 1)^5, {x, 0, 33}], x] (* Michael De Vlieger, Apr 25 2016 *)
PROG
(Maxima) A076809(n):=n^4 + 853*n^3 + 2636*n^2 + 3536*n + 1753$
makelist(A076809(n), n, 0, 30); /* Martin Ettl, Nov 08 2012 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Hilko Koning (hilko(AT)hilko.net), Nov 18 2002
EXTENSIONS
More terms from Michael De Vlieger, Apr 25 2016
STATUS
approved