login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157322 Symmetrical Hahn weights on q-form factorials:m=3;q=4; q-form:t(n,m)=If[m == 0, n!, Product[Sum[(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]]; Hahn weight:b(n,k,m)=If[n == 0, 1, (n!*t[m + 1, k]*t[m + 1, n - k])/(k!*(n - k)!*t[1, n])]. 0
1, 7560, 7560, 49920, 198450, 49920, 214200, 1965600, 1965600, 214200, 696384, 11245500, 25958400, 11245500, 696384, 1871016, 45700200, 185640000, 185640000, 45700200, 1871016, 4377600, 147342510, 905299200, 1593112500, 905299200 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row sums are:

{1, 15120, 298290, 4359600, 49842168, 466422432, 3707151120, 25761076800,

160081662720, 905384837376, 4726028289024,...}.

These are Rhombi sides as ratios of q-form to factorial:

r1=t(1,n)/n!;

r2=t(m+1,k]/(n-k)!;

r3=t(m+1,n-k)/(n-k)!

They get very large very fast, but all are integer.

LINKS

Table of n, a(n) for n=0..25.

FORMULA

m=3;q=4;

q-form:t(n,m)=If[m == 0, n!, Product[Sum[(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];

Hahn weight:

b(n,k,m)=If[n == 0, 1, (n!*t[m + 1, k]*t[m + 1, n - k])/(k!*(n - k)!*t[1, n])].

EXAMPLE

{1},

{7560, 7560},

{49920, 198450, 49920},

{214200, 1965600, 1965600, 214200},

{696384, 11245500, 25958400, 11245500, 696384},

{1871016, 45700200, 185640000, 185640000, 45700200, 1871016},

{4377600, 147342510, 905299200, 1593112500, 905299200, 147342510, 4377600},

{9224280, 402192000, 3405249120, 9063873000, 9063873000, 3405249120, 402192000, 9224280},

{17908800, 968549400, 10622976000, 38963908200, 58934977920, 38963908200, 10622976000, 968549400, 17908800},

{32556744, 2115477000, 28779753600, 136745280000, 285019351344, 285019351344, 136745280000, 28779753600, 2115477000, 32556744}, {56077056, 4273072650, 69844320000, 411633495000, 1111428864000, 1531556631612, 1111428864000, 411633495000, 69844320000, 4273072650, 56077056}

MATHEMATICA

Clear[t, n, m, i, k, a, b];

t[n_, m_] = If[m == 0, n!, Product[Sum[(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];

b[n_, k_, m_] = If[n == 0, 1, (n!*t[m + 1, k]*t[m + 1, n - k])/(k!*(n - k)!*t[ 1, n])];

Table[Flatten[Table[Table[b[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 15}]

CROSSREFS

Sequence in context: A031137 A210171 A234987 * A172443 A190108 A308913

Adjacent sequences:  A157319 A157320 A157321 * A157323 A157324 A157325

KEYWORD

nonn,tabl,uned

AUTHOR

Roger L. Bagula, Feb 26 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 04:54 EDT 2021. Contains 345018 sequences. (Running on oeis4.)